

Objectives

- Locally calculate the water balance with the newly revised Basin Characterization Model in the Indian Wells Valley to estimate natural recharge by constraining all components of the water balance
- Provide validation from multiple sources to increase confidence in estimates
- Evaluate historical and future patterns of natural recharge and evaporative demand in the valley

Progress to date

- Data we have
 - Lots of literature
 - Regional climate data
 - Regional and local streamgage data
 - Actual evapotranspiration from remote sensing
 - Mapped vegetation types
 - Evidence of ponding on playa
- Literature review for estimates of natural recharge
- Development of sub-basins
- Estimates of sub-basin recharge from statewide calibrations
- Preliminary results of actual ET comparisons for 18 vegetation types in basin
- Preliminary results of model comparisons to streamflow
- Ponding playa comparison

Solving the Water Balance

Basin Characterization Model

A grid based regional water balance model

Precipitation – evapotranspiration – sublimation – runoff – recharge – change in soil storage = 0

Recharge + runoff based on statewide calibrations

Recharge and runoff from statewide calibration

			Mean		
		Mean	Recharge		
	Area	Recharge	(acre-		
	(km2)	(mm)	feet)		
Southern Sierra	249	1.5	299		
Northern Sierra	256	3.1	644		
Coso Range	289	2.8	655		
Volcanics	129	19.6	2,048		
Argus Range	511	2.1	877		
Spangler Mtns	105	0.0	-		
El Paso Mtns	80	3.1	203		
Indian Wells Valley floor	1,583	0.3	324		
Rose Valley	414	6.5	2,173		
Total w/o Rose Valley			5,050		

Recharge estimates for Indian Wells Valley

All numbers in acre-feet per yea	r												
									Leakage				
	Surface	Surface	Surface	Surface			Subsurface		from	Irrigation			
5 6	Drainage	Drainage	Drainage	Drainage			Inflow	Leakage	IWVWD	Deep			
Data Source	from	from	from	from El	Inflow	Geothermal	from Sierra	from Los	Water	Percolation	Wastewate		Total
	Sierra	Coso	Argus	Paso	from Rose	Leakage	Nevada	Angeles	Distribution	(agric. and	r Pond	Total	Natural
	Nevada	Range	Range	Mountains	Valley	(upwelling)	Bedrock	Aqueduct	System	muni.)	Percolation	Recharge	Recharge
Lee (1913) 27,000												27,000	
Thompson (1929)	39,000				10,000							49,000	39,000
												11,000 to	
Kunkel and Chase (1969)												15,000	
Bloyd and Robson (1971)	6,235	3,1	.60	400	45							9,850	9,795
Dutcher and Moyle (1973)												11,000	
St. Amand (1986)												11,000	
	at least					1,000 to		4,000					
Austin (1988)	30,000					10,000		4,000					
Bean (1989)	6,300	2,000	1,000	400	400	100	2,500	900	500		1,000	15,100	9,700
Berenbrock and Martin (1991)	6,236	236 3,170 400		43					100	1,001	10,996	9,806	
Watt (1993)	8,876	975 0										9,851	
Thyne and others (1999)	8,026				1,297		34,100						8,026
Bauer (2002)					3,300								
Brown and Caldwell (2009)	5,890	300	1,600	50	1,000							8,521	7,840
	3,090 to	300	1 600	50	1 000	0	0	0	80	1,600 to	0	7,700 to	0.806
Todd (2014)	5,890	300	1,600 50	50	1,000	0	0	0	80	2,100	U	11,000	9,806
Reitz and others (2016)													7,325
USGS (2017) statewide	943	655	877	203	324								E 0E0
calibration (1981-2010)	943	055	8//	203	valley floor								5,050

Comparison of Actual Evapotranspiration Estimates

Results and Discussion

- Sub-basin boundaries for reporting: are there more useful boundaries for land and water resource management?
- Statewide calibration has lower recharge values than other studies, although averaging over dissimilar time periods
 - Requires additional local calibration, including matching local vegetation evapotranspiration
 - Matching streamflows helps to discern the proportion of runoff that becomes recharge in this arid basin
- Spatial distribution of recharge is a function of climate, geology, soil storage, and vegetation type

Take Home Message

- Recharge is the most elusive component of the water balance to quantify
- Water balance closure helps to constrain and define recharge spatially and temporally over basins on the basis of
 - spatially distributed climate
 - soil storage and energy balance properties
 - deterministic processes such as evapotranspiration, changes in soil water content and drainage, and seasonality of water availability and demand
- Layers of evidence are being compiled to help validate and support the estimate of recharge
- Once calibration is complete analysis of historical and future trends will be done

